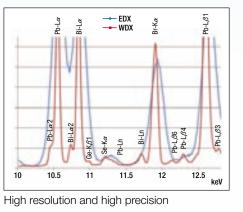
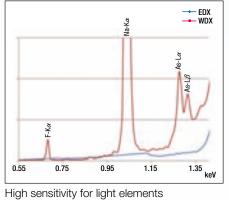
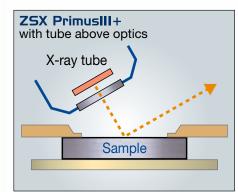

Advanced XRF **ZSX PrimusIII+** X-ray Fluorescence Spectrometer

Reliable Production Control

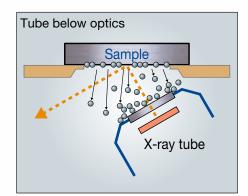

Features


Principle

Excellent resolution with Wavelength Dispersive XRF optics



WDX vs. EDX: Spectrum Comparison



Simple & Safe Sample Preparation Ideal Optics for Powder Analysis

Reduced risk of pressed pellets breaking and damaging spectrometer

Falling particulate matter can contaminate beam path, increased risk of pellets breaking

Applications

Analysis of Iron Ore

Unique Compton Scattering Ratio Method with **Theoretical Alpha Corrections**

Using the Compton scattering ratio with theoretical alpha corrections significantly improves the accuracy of the calibration curve for analysis of Fe in iron ore. This method is also applicable for other nonferrous metal ore and concentrate analysis.

ASTM C114 Analysis of Powder Portland Cement

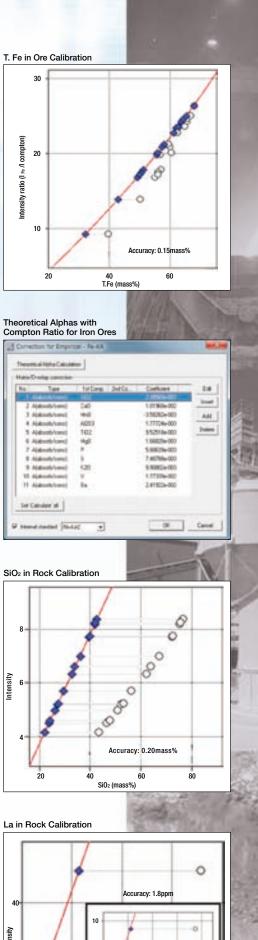
unit: mass%

ZSX Primus III+ was tested to determine if the instrument meets ASTM C114 qualification using Portland cement standards. The results demonstrate the spectrometer's ability to meet ASTM C114 requirements for the analysis of Portland cements.

Repeat analysis results (sample: SRM1889a)

Comp.	Certified value	10x repeat measurement		Difference l duplica		Difference between average of pellets and certified value		
		1 st pellet	2 nd pellet	C114 criteria	Result	C114 criteria	Result	
Ca0	65.34	65.407	65.421	0.2	0.01	0.3	0.1	
SiO2	20.66	20.739	20.775	0.16	0.04	0.2	0.1	
Al2O3	3.89	3.854	3.861	0.2	0.01	0.2	0.03	
Fe2O3	1.937	1.912	1.91	0.1	0.002	0.1	0.03	
SO3	2.69	2.68	2.69	0.1	0.01	0.1	0.05	
MgO	0.814	0.864	0.865	0.16	0.001	0.2	0.05	
K20	0.605	0.61	0.612	0.03	0.002	0.05	0.01	
TiO2	0.227	0.225	0.223	0.02	0.002	0.03	0.003	
Na20	0.195	0.201	0.199	0.03	0.002	0.05	0.005	
P205	0.11	0.113	0.112	0.03	0.001	0.03	0.002	
Mn2O3	0.2588	0.2586	0.2592	0.03	0.001	0.03	0.002	
CI	0.0019	0.003	0.002	0.03	0.001	0.03	0.001	
Zn0	0.0048	0.0042	0.004	0.03	0.000	0.03	0.001	

Fusion bead method is an effective sample preparation


technique to eliminate errors caused by heterogeneous

effects. The low dilution fusion technique enables the analyses of both major and minor elements. Unique fusion bead correction software assures accurate analysis of rocks.

Fusion Bead Rock Analysis

EVOIVINO Vext Stag 2

co

Optimized for Powder and Metal Analyses

The tube above optics in ZSX Primus III+ minimize powder scatter in the vacuum chamber and facilitate fast sample preparation by eliminating the need for binders when performing powder sample analysis. The evacuation and vacuum leak rates can be switched between slow and fast to optimize sample throughput for powder and metal samples.

X-ray Tube

X-ray Tube

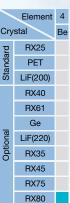
The standard 3kW, Rh target, end-window tube efficiently generates fluorescent X-rays from samples for both heavy elements (Rh-K lines) and light elements (Rh-L lines).

Primary Beam Filter

Eliminates scattering peaks from the X-ray tube target (Thomson and Compton scattering). Reduces background, improving peak:background ratio.

Filter	Function and analyzing elements

	, ,
Ni 400	Eliminates the scattering peaks from Rh target; Rh, Ru, Cd, Ag

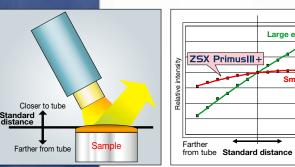

- Ni 40 Reduces background; Pb, As, Mo, Zr, Nb..
- Reduces background; Ti, Co, Fe, Ce, Pr, Nd. AI 125
- Reduces background and reduces scattering from the Rh-target (L lines); Cl, Cd (L), Ag (L) \ldots AI 25

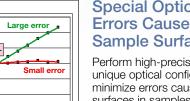
Advanced XRF **ZSX** PrimusIII+ X-ray Fluorescence Spectrometer

Analyzing Crystal

10 position crystal changer

The three standard analyzing crystals in the Primus III+ are capable of analyzing elements from O. The 10-position crystal changer makes it easy to put together the optimum combination from a wide range of optional analyzing crystals, creating a custom solution tailored to meet the needs of your specific applications.

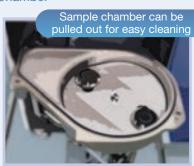

Sample Sample Push up


Sample Stage

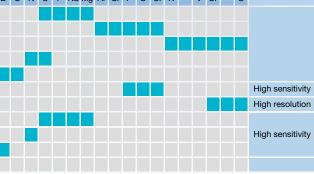
Closer to tube

High Precision Sample Positioning

The high precision positioning of the sample ensures that the distance between the sample surface and X-ray tube is kept constant. This is important for applications that require high precision, such as the analysis of alloys.

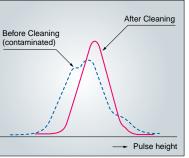

Special Optics Reduce Errors Caused by Curved Sample Surfaces

Perform high-precision analysis using a unique optical configuration designed to minimize errors caused by non-flat surfaces in samples such as fused beads and pressed pellets.


Support System

• Easy to Clean Sample Chamber

In the event that powder particles contaminate the sample chamber, cleanup is easy. Powders in the evacuation system can be caught in the powder trap.



Detectors

The system includes a scintillation counter (SC) for heavy element analysis and gas flow proportional counter (F-PC) with very thin polymer window for light element analysis are equipped. Automatic center wire cleaning keeps the F-PC's performance in peak condition with minimum maintenance.

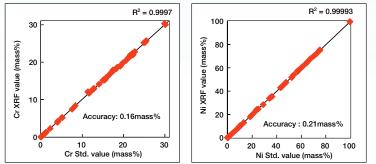
X-ray pulse height distribution

Intuitive and Easy Operation

Routine Analysis

Analysis Package

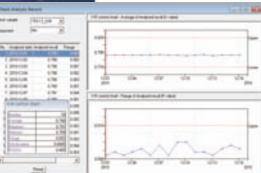
The spectrometer can be supplied with two types of analysis packages. The pre-calibration package (optional) calibrates the spectrometer prior to shipment. With the pre-calibration package, the spectrometer will be ready to perform analyses using the drift correction samples after on-site installation. The application package (optional) contains both standard and drift correction samples, as well as analytical parameters and an installation manual, making instrument setup quick and painless for non-experts.


Pre-Calibration Package

FeCoNi Alloys

Analyzed Elements and Concentration Range

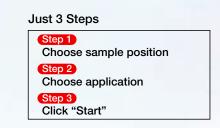
-		-	
Element	Range mass %	Element	Range mass %
Al	0.006 - 3.07	Ni	0.006 - 99.6
Si	0.007 - 4.06	Cu	0.007 - 32.09
Р	0.002 - 0.03	Se	- 0.19
S	0.001 - 0.03	Zr	0.002 - 0.058
Ti	0.002 - 0.03	Nb	0.001 - 5.19
V	0.001 - 0.03	Мо	0.001 - 15.45
Cr	0.002 - 0.03	Sn	0.0007 - 0.014
Mn	0.0015 - 0.03	Та	0.002 - 0.75
Fe	0.02 - 0.03	W	0.007 - 17.98
Co	0.0014 - 49.4	—	—


Relationship between Analyzed and Certified Values

Application Package

Sample Type	Analysis Mode	Sample Prep.	Analyzing Elements	
ow Alloy Steel, Stainless Steel	Calibration Method		Si,Mn,P,S,Ni,Cr.Mo, etc.	
Special Steel, Nickel Alloy	FP Method	Surface Polishing	Mn,Si,Cr,Ni,Co,Mo,W,Fe, etc.	
Brass. Lead Free-Cutting Brass			Cu,Fe,pb,Sn,Zn	
Clay				
Silica Sand			SiO ₂ ,Al ₂ O ₃ ,Fe ₂ O ₃ ,TiO ₂ ,MnO ₂ , etc.	
High Alumina	Calibration Method	Fusion Method		
Magnesia			SiO2,Al2O3,Fe2O3,CaO,MgO,etc.	
Chrome • Magnesia			SiO2,Al2O3,Fe2O3,MgO,Cr2O3, etc.	
Zircon • Zirconia			SiO ₂ ,Al ₂ O ₃ ,Fe ₂ O ₃ ,MgO,ZrO ₂ , etc.	
Polyethylene		Hot press	F,Na,Mg,Al,Si,P,S,Cl,Ca,Ti,Cr,Fe,Zr	

X-R control chart


Tools for Statistical Process Control The ZSX software has a wide array of functionality

including statistical process control required for routine operation in production environments. Type standardization using the bias correction function makes it possible to analyze a range of alloys using standard-based calibration. Drift correction can be pre-programmed to run at preset intervals using the periodic analysis function. Statistical process control via X-R and other control charts are available to facilitate production and analysis control. Trend line graphs displaying drift correction coefficients simplify analysis control.

Intuitive Analysis Window

EZ Analysis

All routine operations are integrated in a new "EZ Analysis" menu. The intuitive user interface makes it easy to run daily operations from a single window.

Advanced EZ Scan

- EZ Scan analysis (standardless, option) with no-fuss Example set-up for powder samples: settings
- Accurate results with sample information

62 Note	Qual analysis	Quertanalyse	Chech analysis	Dift.out.sample
Poster A-1 Sample type 4 19 Male		II Merros Sample same Operator E Hennit culture	metal_barryle	
Measuring time	FU	Fickber File Agme	Common	
	Abstroat.	1		

SQX Analysis

The optional "SQX" program is the best available tool for analyses under the FP (fundamental parameter) method. The scan-based, standardless analysis software utilizes a unique fixed angle measurement feature and provides accurate analysis results using the power of the full FP method, including matching library functionality and automatic overlap correction.

SQX Analysis Results

Sample: CCRMP Syenite SY-3

Major components Component SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P. SQX values 59.23 11.72 6.20 0.31 2.74 8.25 4.16 4.16 0.16 C Std. value 59.68 11.76 6.49 0.32 2.67 8.25 4.12 4.23 0.15 (

Minor elements

									u	
Element	As	Ba	Ce	Со	Cr	Cu	Er	Ga	Gd	L
SQX value	0.0027	0.043	0.193	0.0027	0.0005	0.0026	0.0061	0.0026	0.0094	0.
Std. value	0.0019	0.045	0.223	0.0009	0.0011	0.0017	0.0068	0.0027	0.0105	0.
Element	Nb	Nd	Ni	Pb	Pr	Rb	S	Sm	Sr	٦
SQX value	0.0163	0.063	0.004	0.0151	0.0162	0.0188	0.037	0.0091	0.0287	0.0
Std. value	0.0148	0.067	0.001	0.0133	0.0223	0.0206	0.051	0.0109	0.0302	0.1
Element	U	V	Y	Yb	Zn	Zr				
SQX value	0.061	0.0016	0.0655	0.0051	0.0236	0.027				
Std. value	0.065	0.005	0.0718	0.0062	0.0244	0.032	Mate	ching library	· CCRMP S	venit

Rav

T

10 U

D

S

0

D

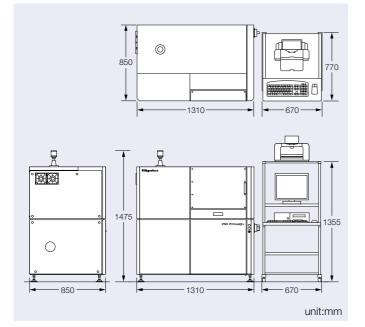
D

CD

0

D

	er Detai - Apad						100
	Conserved that	(Grain	+	Dangin can			
	Recibe	Longe	0	-	1.1816	e 1	
	Sample (De)			Heis	118	**	
	(if) the	Now	-2	# Danier	311	**	
	Pathing Base		~~~~	C. Ave		and .	
	· Si niture			C Out		4	
Component type	C Seath			Baller .			
and balance	C April 1		-	State 1	2-thed		
Sample film used	1		8	Sergin reight	0.000		
	l			Dide wight	1.000	(A	
8 Matching library				Winter other	11.000	6	
Sample size (for correct thickness)						. <u>.</u> ,	
Binder information					48	-Cen	ant.


2 2

Results screen of SQX

mass % P2O5	and the local an	10.0
0.57 0.54	The second secon	
mass % La 0.112 0.134 Th 0.0999 0.1003	International No.40	A Design of the second se

Matching library : CCRMP Syenite SY-2

Dimensions

Installation Requirements

Power	3Phase 200/208V 40A 50/60Hz Single phase 100-240V 50/60Hz (PC)				
Earth Grounding	Grounding resistance less than 30Ω , Independent				
Cooling water	Quality: tap water or equivalent Temperature: 30°C or less Flow: 5L/min or more				
Room temperature	15-28°C (daily variation less than ±2°C within the range)				
Humidity	75% RH or less				
Vibration	2m/s ² or less (Lower than human sensitivity level)				
Counter gas	P-10 gas (Ar 90% Methane 10% mixture) Gas Pressure 0.15MPa				

Specification

		ZSX Primus III+
X-ray Source	X-ray tube	End window type Rh Target 3kW
	High Voltage Generator	High Frequency Inverter type Maximum rating: 3kW, 60kV-100mA
	Maximum Sample Size	ø51mm X 30mm (H)
Optics	Primary Beam Filter	4 Filters
	Diaphragm	4 positions (ø35, 30, 20, 10mm)
	Crystal	10 crystal changer Standard: LiF (200), PET, RX25
Counting	Detector	Heavy Element: SC Light Element: F-PC

 The numeric values of performance indicated in this brochure are based on the test results at Rigaku. Rigaku does not warrant that the identical values can always be obtained regardless of different operational environments.
Company names and product names in this catalog are trademarks of the companies and/or registered trademarks.

Specifications subject to change without notice.

Rigaku Corporation Tokyo Branch

4-14-4, Sendagaya, Shibuya-ku, Tokyo 151-0051, Japan Phone:+81-3-3479-0618 Fax:+81-3-3479-6112 e-mail: rinttyo@rigaku.co.jp

www.Rigaku.com

Rigaku Corporation Head Office

3-9-12, Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan Phone:+81-42-545-8189 Fax:+81-42-544-9223 e-mail:rinttyo@rigaku.co.jp

Rigaku Corporation Osaka Factory

14-8, Akaoji-cho, Takatsuki-shi, Osaka 569-1146, Japan Phone:+81-72-693-7990 Fax:+81-72-693-6746 e-mail:rinttyo@rigaku.co.jp

Rigaku Americas Corporation

9009 New Trails Drive The Woodlands, Texas 77381-5209, USA Phone:+1-281-362-2300 Fax:+1-281-364-3628 e-mail:info@rigaku.com

Rigaku Beijing Corporation

2601A, Tengda Plaza, No.168, Xizhimenwai Avenue, Haidian District, Beijing 100044, P.R.China Phone:+86-010-8857-5768 Fax:+86-010-8857-5748 e-mail:info@rigaku.com.cn

Rigaku Europe SE

Gross-Berliner Damn 151, 12487 Berlin, Germany Phone:+49-30-6264035-0 Fax:+49-30-6264035-10 e-mail:rehq@rigaku.co.jp

Rigaku is proudly represented in Australia and New Zealand by AXT Pty. Ltd. 1/3 Vuko Pl., Warriewood NSW 2102 Australia T. +61 (0)2 9450 1359 F. +61 (0)2 9450 1365 W. www.axt.com.au E. info@axt.com.au